PrePostNEGD#

class causalpy.pymc_experiments.PrePostNEGD[source]#

A class to analyse data from pretest/posttest designs

Parameters:
  • data (DataFrame) – A pandas dataframe

  • formula (str) – A statistical model formula

  • group_variable_name (str) – Name of the column in data for the group variable, should be either binary or boolean

  • pretreatment_variable_name (str) – Name of the column in data for the pretreatment variable

  • model – A PyMC model

Methods

PrePostNEGD.__init__(data, formula, ...[, model])

PrePostNEGD.plot([round_to])

Plot the results

PrePostNEGD.print_coefficients([round_to])

Prints the model coefficients

PrePostNEGD.summary([round_to])

Print text output summarising the results

Attributes

expt_type

idata

Access to the models InferenceData object

model

__init__(data, formula, group_variable_name, pretreatment_variable_name, model=None, **kwargs)[source]#
Parameters:
  • data (DataFrame)

  • formula (str)

  • group_variable_name (str)

  • pretreatment_variable_name (str)

__new__(*args, **kwargs)#