WeightedProportion#

class causalpy.skl_models.WeightedProportion[source]#

Model which minimises sum squared error subject to:

  • All weights are bound between 0-1

  • Weights sum to 1.

Inspiration taken from this blog post https://towardsdatascience.com/understanding-synthetic-control-methods-dd9a291885a1

Methods

WeightedProportion.__init__(*args, **kwargs)

WeightedProportion.fit(X, y)

Fit model on data X with predictor y

WeightedProportion.get_metadata_routing()

Get metadata routing of this object.

WeightedProportion.get_params([deep])

Get parameters for this estimator.

WeightedProportion.loss(W, X, y)

Compute root mean squared loss with data X, weights W, and predictor y

WeightedProportion.predict(X)

Predict results for data X

WeightedProportion.score(X, y[, sample_weight])

Return the coefficient of determination of the prediction.

WeightedProportion.set_params(**params)

Set the parameters of this estimator.

WeightedProportion.set_score_request(*[, ...])

Request metadata passed to the score method.

__init__(*args, **kwargs)#
__new__(*args, **kwargs)#