RegressionDiscontinuity#

class causalpy.skl_experiments.RegressionDiscontinuity[source]#

A class to analyse sharp regression discontinuity experiments.

Parameters:
  • data – A pandas dataframe

  • formula – A statistical model formula

  • treatment_threshold – A scalar threshold value at which the treatment is applied

  • model – A sci-kit learn model object

  • running_variable_name – The name of the predictor variable that the treatment threshold is based upon

  • epsilon (float) – A small scalar value which determines how far above and below the treatment threshold to evaluate the causal impact.

  • bandwidth (Optional[float]) – Data outside of the bandwidth (relative to the discontinuity) is not used to fit the model.

Methods

RegressionDiscontinuity.__init__(data, ...)

RegressionDiscontinuity.plot([round_to])

Plot results

RegressionDiscontinuity.print_coefficients([...])

Prints the model coefficients

RegressionDiscontinuity.summary([round_to])

Print text output summarising the results

Attributes

expt_type

model

outcome_variable_name

__init__(data, formula, treatment_threshold, model=None, running_variable_name='x', epsilon=0.001, bandwidth=None, **kwargs)[source]#
Parameters:
__new__(*args, **kwargs)#